Comment on 'Towards the conservation laws and Lie symmetries for the KhokhlovZabolotskaya equation in three dimensions'

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1992 J. Phys. A: Math. Gen. 252417
(http://iopscience.iop.org/0305-4470/25/8/048)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.62
The article was downloaded on 01/06/2010 at 18:26

Please note that terms and conditions apply.

Comment on 'Towards the conservation laws and Lie symmetries for the Khokhlov-Zabolotskaya equation in three dimensions'

W Hereman \dagger, W-H Steeb \ddagger and N Euler \ddagger
\dagger Department of Mathernatical and Computer Sciences, Colorado School of Mines, Golden, CO 80401, USA
$\$$ Department of Applied Mathematics, Rand Afrikaans University, Johannesburg, South Africa

Received 25 November 1991

Abstract

We comment on the Lie point symmetries for the Khokholov-Zabolotskaya equation as calculated by Roy Chowdhury and Nasker, and demonstrate that their result for the coefficients of the vector field is correct but incomplete.

The Lie point symmetries for the Khokhlov-Zabolotskaya equation

$$
\begin{equation*}
\rho_{x t}-\left(\rho \rho_{x}\right)_{x}=\rho_{y y} \tag{1}
\end{equation*}
$$

were calculated by Roy Chowdhury and Nasker [1]. Following their notation they considered the vector field

$$
\begin{equation*}
\alpha=\eta_{1} \frac{\partial}{\partial \rho}+\eta_{2} \frac{\partial}{\partial x}+\eta_{3} \frac{\partial}{\partial t}+\eta_{4} \frac{\partial}{\partial y} \tag{2}
\end{equation*}
$$

and determined the coefficients to be

$$
\begin{align*}
& \eta_{1}=(a-b) \rho+c y+d \tag{3}\\
& \eta_{2}=a x-(c y+d) t+e \tag{4}\\
& \eta_{3}=b t+e \tag{5}\\
& \eta_{4}=\frac{1}{2}(a+b) y-c t^{2}+e \tag{6}
\end{align*}
$$

where a, b, c, d and e are all constants. Apart from the missing factor t in η_{2}, most likely a misprint in their equation (7), this result is correct but incomplete.

The authors recalculated the Lie point symmetries [2] of (1) with the program SYMMGRP.MAX developed for this purpose by Champagne et al [3]. The coefficients of the vector field are in their most general form given by

$$
\begin{align*}
& \eta_{1}=\rho\left(k-\frac{2}{3} f^{\prime}\right)-\frac{1}{3} x f^{\prime \prime}-\frac{1}{2} y h^{\prime \prime}-\frac{1}{6} y^{2} f^{\prime \prime \prime}-g^{\prime} \tag{7}\\
& \eta_{2}=x\left(k+\frac{1}{3} f^{\prime}\right)+\frac{1}{2} y h^{\prime}+\frac{1}{6} y^{2} f^{\prime \prime}+g \tag{8}\\
& \eta_{3}=f \tag{9}\\
& \eta_{4}=\frac{1}{2} y\left(k+\frac{4}{3} f^{\prime}\right)+h \tag{10}
\end{align*}
$$

where f, g and h are arbitrary smooth functions of t only, and k is an arbitrary constant.

The corresponding infinitesimal generators for the Khokhlov-Zabolotskaya equation are then

$$
\begin{align*}
& G_{1}=-\frac{1}{3}\left(2 \rho f^{\prime}+x f^{\prime \prime}+\frac{1}{2} y^{2} f^{\prime \prime \prime}\right) \partial_{\rho}+\frac{1}{6}\left(2 x f^{\prime}+y^{2} f^{\prime \prime}\right) \partial_{x}+f \partial_{t}+\frac{2}{3} y f^{\prime} \partial_{y} \tag{11}\\
& G_{2}=-g^{\prime} \partial_{\rho}+g \partial_{x} \tag{12}\\
& G_{3}=-\frac{1}{2} y h^{\prime \prime} \partial_{\rho}+\frac{1}{2} y h^{\prime} \partial_{x}+h \partial_{y} \tag{13}\\
& G_{4}=\rho \partial_{\rho}+x \partial_{x}+\frac{1}{2} y \partial_{y} . \tag{14}
\end{align*}
$$

The very special case for the coefficients (3)-(6) considered by Roy Chowdhury and Nasker [1] follows from (7)-(10) by selecting

$$
\begin{align*}
& f=b t+e \tag{15}\\
& g=-d t+e \tag{16}\\
& h=-c t^{2}+e \tag{17}\\
& k=a-\frac{1}{3} b . \tag{18}
\end{align*}
$$

References

[1] Roy Chowdhury A and Nasker M 1986 J. Phys, A: Math. Gen. 19 1775-81
[2] Euler N and Steeb W-H 1992 Continuous Symmetries, Lie Algebras and Differential Equations (Mannheim: Bibliographisches Institut)
[3] Champagne B, Hereman W and Winternitz P 1991 Comput. Phys. Commun. 66 319-40

